Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 647
Filtrar
1.
ACS Chem Neurosci ; 15(9): 1813-1827, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621296

RESUMO

Acetylcholinesterase (AChE) inhibition by organophosphorus (OP) compounds poses a serious health risk to humans. While many therapeutics have been tested for treatment after OP exposure, there is still a need for efficient reactivation against all kinds of OP compounds, and current oxime therapeutics have poor blood-brain barrier penetration into the central nervous system, while offering no recovery in activity from the OP-aged forms of AChE. Herein, we report a novel library of 4-amidophenol quinone methide precursors (QMP) that provide effective reactivation against multiple OP-inhibited forms of AChE in addition to resurrecting the aged form of AChE after exposure to a pesticide or some phosphoramidates. Furthermore, these QMP compounds also reactivate OP-inhibited butyrylcholinesterase (BChE) which is an in vivo, endogenous scavenger of OP compounds. The in vitro efficacies of these QMP compounds were tested for reactivation and resurrection of soluble forms of human AChE and BChE and for reactivation of cholinesterases within human blood as well as blood and brain samples from a humanized mouse model. We identify compound 10c as a lead candidate due to its broad-scope efficacy against multiple OP compounds as well as both cholinesterases. With methylphosphonates, compound 10c (250 µM, 1 h) shows >60% recovered activity from OEt-inhibited AChE in human blood as well as mouse blood and brain, thus highlighting its potential for future in vivo analysis. For 10c, the effective concentration (EC50) is less than 25 µM for reactivation of three different methylphosphonate-inhibited forms of AChE, with a maximum reactivation yield above 80%. Similarly, for OP-inhibited BChE, 10c has EC50 values that are less than 150 µM for two different methylphosphonate compounds. Furthermore, an in vitro kinetic analysis show that 10c has a 2.2- and 92.1-fold superior reactivation efficiency against OEt-inhibited and OiBu-inhibited AChE, respectively, when compared to an oxime control. In addition to 10c being a potent reactivator of AChE and BChE, we also show that 10c is capable of resurrecting (ethyl paraoxon)-aged AChE, which is another current limitation of oximes.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Compostos Organofosforados , Animais , Inibidores da Colinesterase/farmacologia , Humanos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Camundongos , Butirilcolinesterase/metabolismo , Compostos Organofosforados/farmacologia , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Indolquinonas/farmacologia
2.
Chem Biol Interact ; 394: 110941, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493910

RESUMO

The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.


Assuntos
Butirilcolinesterase , Reativadores da Colinesterase , Intoxicação por Organofosfatos , Oximas , Oximas/química , Oximas/farmacologia , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Humanos , Intoxicação por Organofosfatos/tratamento farmacológico , Acetilcolinesterase/metabolismo , Antídotos/química , Antídotos/farmacologia , Cinética , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Animais , Compostos Organofosforados/química
3.
Arch Toxicol ; 98(4): 1135-1149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446233

RESUMO

A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.


Assuntos
Reativadores da Colinesterase , Compostos de Pralidoxima , Taurina/análogos & derivados , Ratos , Humanos , Animais , Reativadores da Colinesterase/farmacologia , Trimedoxima/farmacologia , Butirilcolinesterase , Acetilcolinesterase , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Antídotos/farmacologia , Inibidores da Colinesterase/toxicidade , Fósforo , Oxigênio
4.
Chem Biol Interact ; 392: 110929, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417730

RESUMO

Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Camundongos , Animais , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/química , Agentes Neurotóxicos/toxicidade , Nível de Efeito Adverso não Observado , Substâncias para a Guerra Química/toxicidade , Oximas/farmacologia , Oximas/uso terapêutico , Oximas/química , Compostos de Piridínio/farmacologia , Inibidores da Colinesterase/toxicidade , Inibidores da Colinesterase/química , Colinesterases , Acetilcolinesterase , Antídotos/farmacologia , Antídotos/uso terapêutico
5.
Toxicology ; 503: 153741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311098

RESUMO

Organophosphate (OP) poisoning is currently treated with atropine, oximes and benzodiazepines. The nicotinic signs, i.e., respiratory impairment, can only be targeted indirectly via the use of oximes as reactivators of OP-inhibited acetylcholinesterase. Hence, compounds selectively targeting nicotinic acetylcholine receptors (nAChRs) might fundamentally improve current treatment options. The bispyridinium compound MB327 has previously shown some therapeutic effect against nerve agents in vitro and in vivo. Nevertheless, compound optimization was deemed necessary, due to limitations (e.g., toxicity and efficacy). The current study investigated a series of 4-tert-butyl bispyridinium compounds and of corresponding bispyridinium compounds without substituents in a rat diaphragm model using an indirect field stimulation technique. The length of the respective linker influenced the ability of the bispyridinium compounds to restore muscle function in rat hemidiaphragms. The current data show structure-activity relationships for a series of bispyridinium compounds and provide insight for future structure-based molecular modeling.


Assuntos
Reativadores da Colinesterase , Agentes Neurotóxicos , Intoxicação por Organofosfatos , Ratos , Animais , Oximas/farmacologia , Oximas/uso terapêutico , Agentes Neurotóxicos/toxicidade , Diafragma , Acetilcolinesterase/metabolismo , Compostos de Piridínio/farmacologia , Compostos de Piridínio/uso terapêutico , Relação Estrutura-Atividade , Intoxicação por Organofosfatos/tratamento farmacológico , Reativadores da Colinesterase/farmacologia , Inibidores da Colinesterase/farmacologia
6.
Disaster Med Public Health Prep ; 18: e32, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38384185

RESUMO

Pralidoxime is the only oxime antidote to organophosphate poisoning stocked in the United Kingdom, produced by rational drug design in the 1950s. Typically, it is used alongside atropine, to reverse the effects of acetylcholinesterase inhibition. However, its efficacy has been questioned by recent meta-analyses of use treating attempted suicides in less economically developed countries, where organophosphate poisoning is more common. This policy analysis assesses the likely efficacy of pralidoxime in the United Kingdom, in scenarios largely different from those evaluated in meta-analyses. In all scenarios, the UK delay in antidote administration poses a major problem, as pralidoxime acts in a time-critical reactivation mechanism before "ageing" of acetylcholinesterase occurs. Additionally, changes in the organophosphates used today versus those pralidoxime was rationally designed to reverse, have reduced efficacy since the 1950s. Finally, the current dosage regimen may be insufficient. Therefore, one must re-evaluate our preparedness and approach to organophosphate poisoning in the United Kingdom.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Compostos de Pralidoxima , Humanos , Antídotos/uso terapêutico , Intoxicação por Organofosfatos/tratamento farmacológico , Acetilcolinesterase/uso terapêutico , Reativadores da Colinesterase/uso terapêutico , Reativadores da Colinesterase/farmacologia
7.
Int J Nanomedicine ; 19: 307-326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38229703

RESUMO

Introduction: Organophosphates are among the deadliest of known chemicals based on their ability to inactivate acetylcholinesterase in neuromuscular junctions and synapses of the central and peripheral nervous systems. The consequent accumulation of acetylcholine can produce severe acute toxicities and death. Oxime antidotes act by reactivating acetylcholinesterase with the only such reactivator approved for use in the United States being 2-pyridine aldoxime methyl chloride (a.k.a., pralidoxime or 2-PAM). However, this compound does not cross the blood-brain barrier readily and so is limited in its ability to reactivate acetylcholinesterase in the brain. Methods: We have developed a novel formulation of 2-PAM by encapsulating it within a nanocomplex designed to cross the blood-brain barrier via transferrin receptor-mediated transcytosis. This nanocomplex (termed scL-2PAM) has been subjected to head-to-head comparisons with unencapsulated 2-PAM in mice exposed to paraoxon, an organophosphate with anticholinesterase activity. Results and Discussion: In mice exposed to a sublethal dose of paraoxon, scL-2PAM reduced the extent and duration of cholinergic symptoms more effectively than did unencapsulated 2-PAM. The scL-2PAM formulation was also more effective than unencapsulated 2-PAM in rescuing mice from death after exposure to otherwise-lethal levels of paraoxon. Improved survival rates in paraoxon-exposed mice were accompanied by a higher degree of reactivation of brain acetylcholinesterase. Conclusion: Our data indicate that scL-2PAM is superior to the currently used form of 2-PAM in terms of both mitigating paraoxon toxicity in mice and reactivating acetylcholinesterase in their brains.


Assuntos
Inibidores da Colinesterase , Reativadores da Colinesterase , Paraoxon , Compostos de Pralidoxima , Animais , Camundongos , Acetilcolinesterase/metabolismo , Encéfalo/metabolismo , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Organofosfatos , Oximas/farmacologia , Oximas/química , Paraoxon/toxicidade , Paraoxon/química , Compostos de Pralidoxima/química , Compostos de Pralidoxima/farmacologia
8.
J Neurochem ; 168(4): 370-380, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36786545

RESUMO

Millions of individuals globally suffer from inadvertent, occupational or self-harm exposures from organophosphate (OP) insecticides, significantly impacting human health. Similar to nerve agents, insecticides are neurotoxins that target and inhibit acetylcholinesterase (AChE) in central and peripheral synapses in the cholinergic nervous system. Post-exposure therapeutic countermeasures generally include administration of atropine with an oxime to reactivate the OP-inhibited AChE. However, animal model studies and recent clinical trials using insecticide-poisoned individuals have shown minimal clinical benefits of the currently approved oximes and their efficacy as antidotes has been debated. Currently used oximes either reactivate poorly, do not readily cross the blood-brain barrier (BBB), or are rapidly cleared from the circulation and must be repeatedly administered. Zwitterionic oximes of unbranched and simplified structure, for example RS194B, have been developed that efficiently cross the BBB resulting in reactivation of OP-inhibited AChE and dramatic reversal of severe clinical symptoms in mice and macaques exposed to OP insecticides or nerve agents. Thus, a single IM injection of RS194B has been shown to rapidly restore blood AChE and butyrylcholinesterase (BChE) activity, reverse cholinergic symptoms, and prevent death in macaques following lethal inhaled sarin and paraoxon exposure. The present macaque studies extend these findings and assess the ability of post-exposure RS194B treatment to counteract oral poisoning by highly toxic diethylphosphorothioate insecticides such as parathion and chlorpyrifos. These OPs require conversion by P450 in the liver of the inactive thions to the active toxic oxon forms, and once again demonstrated RS194B efficacy to reactivate and alleviate clinical symptoms within 60 mins of a single IM administration. Furthermore, when delivered orally, the Tmax of RS194B at 1-2 h was in the same range as those administered IM but were maintained in the circulation for longer periods greatly facilitating the use of RS194B as a non-invasive treatment, especially in isolated rural settings.


Assuntos
Acetamidas , Clorpirifos , Reativadores da Colinesterase , Inseticidas , Agentes Neurotóxicos , Paration , Animais , Camundongos , Acetilcolinesterase/química , Butirilcolinesterase/química , Clorpirifos/toxicidade , Inibidores da Colinesterase/química , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Inseticidas/toxicidade , Macaca , Compostos Organofosforados/toxicidade , Oximas/farmacologia , Oximas/química , Oximas/uso terapêutico , Paration/efeitos adversos , Paration/toxicidade
9.
Chem Biol Interact ; 387: 110789, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37931869

RESUMO

The kinetic analysis of esterase inhibition by acylating compounds (organophosphorus, carbamates and sulfonylfluorides) sometimes cannot yield consistent results by fitting simple inhibition kinetic models to experimental data of complex systems. In this work kinetic data were obtained for demeton-S-methyl (DSM) with human acetylcholinesterase in two kinds of experiments: (a) time progressive inhibition with a range of concentrations, (b) progressive spontaneous reactivation starting with pre-inhibited enzyme. DSM is an organophosphorus compound used as pesticide and considered a model for studying the dermal exposure of nerve agents such as VX gas. A kinetic model equation was deduced with four different molecular phenomena occurring simultaneously: (1) inhibition; (2) spontaneous reactivation; (3) aging; and (4) ongoing inhibition (inhibition during the substrate reaction). A 3D fit of the model was applied to analyze the inhibition experimental data. The best-fitting model is compatible with a sensitive enzymatic entity. The second-order rate constant of inhibition (ki = 0.0422 µM-1 min-1), the spontaneous reactivation constant (ks = 0.0202 min-1) and the aging constant (kg = 0.0043 min-1) were simultaneously estimated. As an example for testing the model and approach, it was tested also in the presence of 5 % ethanol (conditions as previously used in the literature), the best fitting model is compatible with two apparent sensitive enzymatic entities (17 % and 83 %) and only one spontaneously reactivates and ages. The corresponding second-order rate constants of inhibition (ki = 0.0354 and 0.0119 µM-1 min-1) and the spontaneous reactivation and aging constants for the less sensitive component (kr = 0.0203 min-1 and kg = 0.0088 min-1) were estimated. The results were also consistent with a significant ongoing inhibition. These parameters were similar to those deduced in spontaneous reactivation experiments of the pre-inhibited samples with DSM in the absence or presence of ethanol. The two apparent components fit was interpreted by an equilibrium between ethanol-free and ethanol-bound enzyme. The consistency of results in inhibition and in spontaneous reactivation experiments was considered an internal validation of the methodology and the conclusions.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Reativadores da Colinesterase , Organofosfatos , Humanos , Acetilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Reativadores da Colinesterase/farmacologia , Etanol , Cinética , Oximas/química , Ativação Enzimática , Organofosfatos/farmacologia
10.
Toxicol Lett ; 392: 75-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160862

RESUMO

Precision-cut lung slices (PCLS) are a suitable model for analyzing the acetylcholinesterase (AChE) activity and subsequent effects after exposure to organophosphorus (OP) compounds. In this study, the AChE activity was determined in intact PCLS for the first time. Since the current standard therapy for OP poisoning (atropine + oxime + benzodiazepine) lacks efficiency, reliable models to study novel therapeutic substances are needed. Models should depict pathophysiological mechanisms and help to evaluate the beneficial effects of new therapeutics. Here PCLS were exposed to three organophosphorus nerve agents (OPNAs): sarin (GB), cyclosarin (GF), and VX. They were then treated with three reactivators: HI-6, obidoxime (OBI), and a non-oxime (NOX-6). The endpoints investigated in this study were the AChE activity and the airway area (AA) change. OPNA exposure led to very low residual AChE activities. Depending on the reactivator properties different AChE reactivation results were measured. GB-inhibited PCLS-AChE was reactivated best, followed by VX and GF. To substantiate these findings and to understand the connection between the molecular and the functional levels in a more profound way the results were correlated to the AA changes. These investigations underline the importance of reactivator use and point to the possibilities for future improvements in the treatment of OPNA-exposed victims.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Compostos Organotiofosforados , Humanos , Acetilcolinesterase , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Inibidores da Colinesterase , Compostos Organofosforados/toxicidade , Oximas/farmacologia , Oximas/uso terapêutico , Intoxicação por Organofosfatos/tratamento farmacológico , Pulmão
11.
Chem Res Toxicol ; 36(12): 1912-1920, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37950699

RESUMO

Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.


Assuntos
Reativadores da Colinesterase , Humanos , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Acetilcolinesterase/metabolismo , Células Hep G2 , Inibidores da Colinesterase/toxicidade , Oximas/farmacologia , Oximas/química , Antídotos/farmacologia , Organofosfatos/toxicidade , Estresse Oxidativo , Carbono , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química
12.
Bioorg Med Chem Lett ; 96: 129504, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37838342

RESUMO

This study aimed to explore non-pyridinium oxime acetylcholinesterase (AChE) reactivators that could hold the potential to overcome the limitations of the currently available compounds used in the clinic to treat the neurologic manifestations induced by intoxication with organophosphorus agents. Fifteen compounds with various non-pyridinium oxime moieties were evaluated for AChE activity at different concentrations, including aldoximes, ketoximes, and α-ketoaldoximes. The therapeutic potential of the oxime compounds was evaluated by assessing their ability to reactivate AChE inhibited by paraoxon. Among the tested compounds, α-Ketoaldoxime derivative 13 showed the highest reactivation (%) reaching 67 % and 60 % AChE reactivation when evaluated against OP-inhibited electric eel AChE at concentrations of 1,000 and 100 µM, respectively. Compound 13 showed a comparable reactivation ability of AChE (60 %) compared to that of pralidoxime (56 %) at concentrations of 100 µM. Molecular docking simulation of the most active compounds 12 and 13 was conducted to predict the binding mode of the reactivation of electric eel AChE. As a result, a non-pyridinium oxime moiety 13, is a potential reactivator of OP-inhibited AChE and is taken as a lead compound for the development of novel AChE reactivators with enhanced capacity to freely cross the blood-brain barrier.


Assuntos
Reativadores da Colinesterase , Oximas , Oximas/farmacologia , Oximas/química , Paraoxon/farmacologia , Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química , Acetamidas , Compostos Organofosforados/química
13.
J Comput Aided Mol Des ; 37(12): 755-764, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37796381

RESUMO

Owing to their potential to cause serious adverse health effects, significant efforts have been made to develop antidotes for organophosphate (OP) anticholinesterases, such as nerve agents. To be optimally effective, antidotes must not only reactivate inhibited target enzymes, but also have the ability to cross the blood-brain barrier (BBB). Progress has been made toward brain-penetrating acetylcholinesterase reactivators through the development of a new group of substituted phenoxyalkyl pyridinium oximes. To help in the selection and prioritization of compounds for future synthesis and testing within this class of chemicals, and to identify candidate broad-spectrum molecules, an in silico framework was developed to systematically generate structures and screen them for reactivation efficacy and BBB penetration potential.


Assuntos
Antídotos , Reativadores da Colinesterase , Antídotos/farmacologia , Antídotos/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Organofosfatos , Acetilcolinesterase/química , Oximas/química
14.
Chem Biol Interact ; 385: 110735, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802409

RESUMO

We report a green chemistry approach for preparation of oxime-functionalized ILs as AChE reactivators: amide/ester linked IL, l-alanine, and l-phenylalanine derived salts bearing pyridinium aldoxime moiety. The reactivation capacities of the novel oximes were evaluated towards AChE inhibited by typical toxic organophosphates, sarin (GB), VX, and paraoxon (PON). The studied compounds are mostly non-toxic up to the highest concentrations screened (2 mM) towards Gram-negative and Gram-positive bacteria cell lines and both filamentous fungi and yeasts in the in vitro screening experiments as well as towards the eukaryotic cell (CHO-K1 cell line). Introduction of the oxime moiety in initially biodegradable structure decreases its ability to biodegradation. The compound 3d was shown to reveal remarkable activity against the AChE inhibited by VX, exceeding conventional reactivators 2-PAM and obidoxime. The regularities on antidotal activity, cell viability, plasma stability, biodegradability as well as molecular docking study of the newly synthesized oximes will be used for further improvement of their structures.


Assuntos
Reativadores da Colinesterase , Líquidos Iônicos , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Oximas/farmacologia , Oximas/química , Antídotos , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química
15.
Bioorg Chem ; 141: 106858, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774432

RESUMO

A series of new uncharged conjugates of adenine, 3,6-dimetyl-, 1,6-dimethyl- and 6-methyluracil with 1,2,4-triazole-3-hydroxamic and 1,2,3-triazole-4-hydroxamic acid moieties were synthesized and studied as reactivators of organophosphate-inhibited cholinesterase. It is shown that triazole-hydroxamic acids can reactivate acetylcholinesterase (AChE) inhibited by paraoxon (POX) in vitro, offering reactivation constants comparable to those of pralidoxime (2-PAM). However, in contrast to 2-PAM, triazole-hydroxamic acids demonstrated the ability to reactivate AChE in the brain of rats poisoned with POX. At a dose of 200 mg/kg (i.v.), the lead compound 3e reactivated 22.6 ± 7.3% of brain AChE in rats poisoned with POX. In a rat model of POX-induced delayed neurodegeneration, compound 3e reduced the neuronal injury labeled with FJB upon double administration 1 and 3 h after poisoning. Compound 3e was also shown to prevent memory impairment of POX-poisoned rats as tested in a Morris water maze.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Ratos , Animais , Acetilcolinesterase , Reativadores da Colinesterase/farmacologia , Inibidores da Colinesterase/farmacologia , Intoxicação por Organofosfatos/tratamento farmacológico , Ácidos Hidroxâmicos , Paraoxon/farmacologia , Oximas/farmacologia
16.
Chem Biol Interact ; 383: 110656, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37579936

RESUMO

At the present, only four antidotes are in use in therapy for poisoning by organophosphorus compounds: 2-PAM, HI-6, obidoxime and trimedoxime. Numerous compounds have been designed and synthetized to be more effective reactivators than those currently in use. Many of those new compounds fail at the enzyme level because interactions formed within the AChE active site are not favourable ones that lead to a successful reactivation. The approach in which the modeling of a phosphorylated oxime (POX), a product of successful reactivation in the AChE active site, may be a way to better understand the role of active site residues during the process of formation of the Michaelis type of complex between an enzyme and oxime. After reactivation, a change in phosphorus stereochemistry occurs leading to a different spatial arrangement of attached substituents, now including an oxime. To study interactions between the AChE oxyanion hole and a phosphorylated oxime, an S203G mutant was used to avoid the steric hindrance caused by the catalytic serine. In this way, the POX could be positioned close to the oxyanion hole. In the final step, the oxime without a phosphoester moiety was transferred into the phosphorylated AChE and molecular dynamics was used to test the stability of the near-attack conformation of the oxime near the phosphorylated serine.


Assuntos
Reativadores da Colinesterase , Oximas , Oximas/farmacologia , Oximas/química , Acetilcolinesterase/química , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Compostos Organofosforados/química
17.
Chem Biol Interact ; 382: 110619, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406983

RESUMO

The Near Attack Conformation (NAC) approach states that the efficiency of an enzyme-catalyzed reaction depends on the prior attainment of optimal conditions for substrate atom organization and positioning for bond formation. These conditions are prerequisites for the transition state (TS) in which the involved atoms are within the van der Waals range of contact and positioned at an angle similar to that achieved after bond formation. The successful application of this approach to investigate the reactivation mechanism of acetylcholinesterase inhibited by nerve agents has contributed to a better understanding of this mechanism and demonstrated consistent corroboration with experimental data. In this article, we summarize the accomplishments achieved thus far and outline future perspectives.


Assuntos
Reativadores da Colinesterase , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Acetilcolinesterase/química , Oximas/química , Inibidores da Colinesterase/farmacologia
18.
Chem Biol Interact ; 382: 110622, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442286

RESUMO

The A-series is the most recent generation of chemical warfare nerve agents (CWA) which act directly on the inhibition of the human acetylcholinesterase (HssAChE) enzyme. These compounds lack accurate experimental data on their physicochemical properties, and there is no evidence that traditional antidotes effectively reactivate HssAChE inhibited by them. In the search for potential antidotes, we employed virtual screening, molecular docking, and molecular dynamics (MD) simulations for the theoretical assessment of the performance of a library of Mannich phenols as potential reactivators of HssAChE inhibited by the Novichok agents A-230, A-232, and A-234, in comparison with the commercial oximes pralidoxime (2-PAM), asoxime (HI-6), trimedoxime (TMB-4), and obidoxime. Following the near-attack conformation (NAC) approach, our results suggest that the compounds assessed would face difficulties in triggering the proposed nucleophilic in-line displacement mechanism. Despite this, it was observed that certain Mannich phenols presented similar or superior results to those obtained by reference oximes against A-232 and A-234 model, suggesting that these compounds can adopt more favourable conformations. Additional binding energy calculations confirmed the stability of the model/ligands complexes and the reactivating potential observed in the molecular docking and MD studies. Our findings indicate that the Mannich phenols could be alternative antidotes and that their efficacy should be evaluated experimentally against the A-series CWA.


Assuntos
Substâncias para a Guerra Química , Reativadores da Colinesterase , Agentes Neurotóxicos , Humanos , Antídotos/farmacologia , Reativadores da Colinesterase/farmacologia , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Oximas/farmacologia , Oximas/química , Trimedoxima/química , Trimedoxima/farmacologia , Substâncias para a Guerra Química/farmacologia , Compostos de Piridínio/farmacologia
19.
Inorg Chem ; 62(13): 5049-5053, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939843

RESUMO

A novel material with dual activity toward organophosphate (OP) poisoning, based on Zr-MOF-808 and neutral oxime RS69N, has been prepared. The hybrid material has a significant drug payload (5.2 ± 0.9 oxime to MOF-808 molar ratio) and shows a sustained oxime release in simulated physiological media, leading to the successful reactivation of OP-inhibited acetylcholinesterase. At the same time, the hybrid system presents an efficient and moderately fast removal rate of a toxic organophosphorus model compound (diisopropylfluorophosphate) from simulated physiological media (t1/2 = 183 min; 95% removal rate after 24 h).


Assuntos
Reativadores da Colinesterase , Estruturas Metalorgânicas , Intoxicação por Organofosfatos , Humanos , Oximas/farmacologia , Antídotos , Reativadores da Colinesterase/farmacologia , Zircônio , Acetilcolinesterase , Inibidores da Colinesterase/farmacologia , Compostos Organofosforados/farmacologia
20.
Drug Res (Stuttg) ; 73(3): 156-163, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36626919

RESUMO

Oximes, as classical acetylcholinesterase (AChE) reactivators, have some pharmacokinetics/pharmacodynamics disadvantages. During the synthesis of non-oxime compounds, we encountered the compound 2-formylbenzoic acid (2-FBA) with promising in vitro and in vivo cholinesterase (ChE) reactivating properties in the acute exposure to diazinon (DZN). For in vitro experiments, the healthy mice serum and brain homogenate were freshly prepared and exposed to DZN (160 µg/mL). After 10 minutes, 2-FBA was added to the poisoned samples, and ChE activity was measured afterward. For the in vivo assay, the mice were poisoned with DZN subcutaneous (SC) injection (50 mg/kg), and after 1 hour, either 2-FBA or Pralidoxime (2-PAM) was injected intravenously (IV). After 3 h, ChE activity was measured in the serum and brain homogenate samples. The LD50 (IV) for 2-FBA in mice was measured as well. 2-FBA effectively reactivated the inhibited ChE in serum and brain homogenate samples in vitro. In the in vivo experiments, while 2-FBA could significantly reactivate the brain ChE even better than 2-PAM, they failed to reactivate the serum ChE by single IV injection. LD50 of 2-FBA was calculated to be 963 mg/kg. There were no general toxicity signs in any treatment groups. The in silico results support the potential ability of 2-FBA efficacy via possibly Witting reaction mechanism. Our findings indicate that 2-FBA seems to be a suitable non-oxime candidate for AChE reactivation with minimal side effects. Further toxicokinetic studies on this compound are strongly recommended to be performed before conducting the clinical trial in humans.


Assuntos
Reativadores da Colinesterase , Colinesterases , Camundongos , Humanos , Animais , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/uso terapêutico , Diazinon/toxicidade , Acetilcolinesterase , Inibidores da Colinesterase/toxicidade , Oximas/farmacologia , Oximas/uso terapêutico , Antídotos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA